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Abstract

It is necessary for designing vibration-isolation systems to know the components’ static stiffness,
dynamic stiffness and shock stiffness, which are obtained through experiment at present. If the stiffness
model of (viscous) elastic body is set-up, the essence of stiffness will be clearer and the experiment simpler.
This paper presents a new method for modelling the stiffness of elastic body with viscoelastic theory. The
parameters of the model set-up by using this method can be determined easily and present the
characteristics of the elastic body’s static stiffness, dynamic stiffness and shock stiffness.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The stiffness of elastic body is defined as partial differential of the acting force on the elastic
body to its corresponding displacement [1]

k ¼
@F

@x
: ð1Þ

If the displacement depends only on the acting force and its time history,

xðtÞ ¼ f FðtÞ;
Z t

0

FðtÞh1ðt � tÞ dt;
Z t

0

Z t

0

F ðtÞh2ðt � t1; t � t2Þ dt1 dt2;y
� �

; ð2Þ

then the stiffness will be the function of the displacement and its derivative:

k ¼
@F

@x
¼ kðx; ’x; .x;yÞ: ð3Þ

In engineering, different forms of the stiffness are needed (such as the static stiffness, dynamic
stiffness and shock stiffness, and they correspond to the static load, dynamic load and shock
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load). For most of the elastic materials, the value of the static stiffness is the smallest; the shock
stiffness is the greatest and the dynamic stiffness lies between them.
Rubber is a kind of viscoelastic material and is widely used in engineering. The differences

between its stiffnesses (static stiffness, dynamic stiffness and shock stiffness) are large, and
these differences cannot be neglected, especially in the antishock design process. A uniform
model of the static stiffness, dynamic stiffness and shock stiffness can be set-up using the
theory of viscoelasticity [4–7]. The standard three-parameter solid model describes qualitatively
the stiffness with respect to a very limited range of frequency through its inner retardation
mechanisms. In order to describe the stiffness frequency characteristics in a broader range of
frequency, more retardation mechanisms that work at different frequencies should be considered
in the model. This model is the so-called general Maxwell model consisting of several Maxwell
bodies, which suggests a high order differential equation describing the relationship of the force
and the strain of the material. The more bodies are used, the more accurate the fitting is and
known parameters are needed. This model is easy to understand and its parameters are easy
to get.

2. Static stiffness, dynamic stiffness and shock stiffness

The stiffness defined by Eq. (3) cannot be obtained easily and is inconvenient to use in
engineering. In vibration engineering, the stiffness can be defined by the displacement response to
a sine force excitation, i.e., exerting a force FðtÞ ¼ Fejot (whose amplitude is F and frequency o)
on the elastic body, generally which is a periodic function of frequency o generally,
X ðtÞ ¼ Xejotþj ¼ Xnejot yields the steady displacement response. Thus, the complex stiffness is
defined by

kn ¼
F

X n
¼ knðo;X Þ: ð4Þ

If the system is linear, i.e., if the stiffness is independent of the amplitude of force, i.e., if
k� ¼ k�ðoÞ; then the complex stiffness can be determined by amplitude k ¼ F=X ; and phase
angle j; both of which are functions of frequency o: The static stiffness, dynamic stiffness
and shock stiffness can all be obtained from complex stiffness. This definition can be generalized
to common springs, dampers and their combinations. Note that the above definition is based
on the assumption that the initial displacement, velocity and acceleration are all zero before
loading.
If the constitutive relationship of the material is independent of the strain velocity (and this in

fact is true for some materials like steel spring with independent of loading speed) then stiffness is
independent of the frequency. If the constitutive relationship of the material dependent on the
strain velocity (and this is in fact is true for some materials like rubber, whose displacement is
dependent on the loading speed) then kð0Þ is its static stiffness and kðNÞ its shock stiffness. In
engineering, o can be taken as the typical frequency of the excitation force or the natural
frequency of the system (because the response to it is dominant), hence, kðoÞ is the so-called
dynamic stiffness.
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For the materials whose constitutive relationships are independent of strain velocity, there is no
difference among their stiffnesses, static stiffness, dynamic stiffness and shock stiffness. For those
materials whose constitutive relationships are dependent on the strain velocity, in general, the
static stiffness is the smallest, the shock stiffness is the greatest and the dynamic stiffness lies
between them. For the elastic bodies the static stiffness is greater than zero and the shock stiffness
is somewhat limited.

3. Standard three-parameter solid model

In vibration engineering, it is assumed that the stress in the material will never reach the yielding
point, i.e., plastic deformation of the elastic body will never happen. Thus, viscoelasicity theory
can be used to model its stiffness [2].
As for Maxwell model (Fig. 1(a))

x ¼
F0

k
sinot �

F0

co
cosot; ð5Þ

kðoÞ ¼
kcoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ c2o2
p : ð6Þ

The static stiffness: kð0Þ ¼ 0; the shock stiffness: kðNÞ ¼ k:
As for Voigt model (Fig. 1(b))

x ¼ k cosot þ co sinot; ð7Þ

kðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ o2c2

p
: ð8Þ

The static stiffness: kð0Þ ¼ k; the shock stiffness: kðNÞ ¼ N:
The stiffnesses mentioned above disagree with the facts and they are unable to present the

stiffness of the viscoelastic body correctly.
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Fig. 1. Three different models of viscoelastic body: (a) Maxwell model, (b) Voigt model, and (c) standard solid model.
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As for standard solid model (Fig. 1(c))

dx

dt
þ

k1k2

c2ðk1 þ k2Þ
x ¼

k2

c2ðk1 þ k2Þ
F þ

1

ðk1 þ k2Þ
dF

dt
; ð9Þ

kðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21k

2
2 þ ðk1 þ k2Þ

2c22o
2

k22 þ o2c22

s
; ð10Þ

tan d ¼
k22c2o

k1k
2
2 þ ðk1 þ k2Þc22o

2
; ð11Þ

the static stiffness kð0Þ ¼ k1; the shock stiffness kðNÞ ¼ k1 þ k2:
This agrees with the fact in form.
Eq. (10) can be given in terms of the static stiffness and the shock stiffness

k1 ¼ kð0Þ; k2 ¼ kðNÞ � kð0Þ; kðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð0ÞðkðNÞ � kð0ÞÞ2 þ k2ðNÞc22o

2

ðkðNÞ � kð0ÞÞ2 þ c22o
2

s
: ð12Þ

tan d has its maximum when o ¼ on

tg dmax ¼
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k1k2

q ¼
kðNÞ � kð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kð0ÞkðNÞ
p ; ð13Þ

kðonÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1 þ k2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðNÞkð0Þ

p
: ð14Þ

The curves in Fig. 2 are the stiffness- and phase-frequency characteristics of the model. The
complex stiffness of the model can be divided into three sections in the frequency domain: in the
lower frequency range, the model embodies the static stiffness almost without damp; in the higher
frequency range, the model embodies the shock stiffness almost without damp; in the middle
frequency range, the stiffness is almost linear with logarithm frequency, and the damp has a
maximum and the frequency corresponding to this maximum is one of the model’s natural
characteristics and this implies the acting frequency of the retardation mechanism is dependent on
the strain velocity of the material. The frequency can be considered to be the characteristic
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Fig. 2. Stiffness and phase frequency of the standard three-parameter solid model.
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frequency of the retardation mechanism. Less than this frequency, the retardation mechanism
works very slowly and makes no difference; above this frequency, it is too late to work and makes
no difference. Only at the characteristic frequency can the function of retardation mechanism be
the greatest.
The determination of parameters can be carried out fitted by the approximate method as

follows: First, take the stiffness at the lower frequency as constant, i.e., the static stiffness kð0Þ;
and take the stiffness at higher frequency as constant, i.e., the shock stiffness kðNÞ (kð0ÞpkðNÞ),
so that the stiffness parameters k1 and k2 are determined. Second, determine the characteristic
frequency, that is, determine on when the stiffness is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðNÞkð0Þ

p
: Then the damp

c ¼ ðkðNÞ � kð0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð0Þ=kðNÞ

p
=on: The static stiffness and the shock stiffness can be determined

using the least-squares method to make the error the least.

4. General Maxwell body

For actual viscoelastic body, the range of the frequency affecting the stiffness is wide. Hence, it
is impossible there to be only one retardation mechanism in the range. There should be a series of
retardation mechanisms with different characteristic frequencies and the associated weight factors
must be different [3].
The standard three-parameter solid model can be generalized to the general Maxwell model (as

shown in Fig. 3) consisting of a series of Maxwell bodies connected in parallel. Every Maxwell
body represents a retardation mechanism with certain characteristic frequency. Assuming the
characteristic frequency of the 0th Maxwell body to be zero, the model can be fit to represent a
kind of solid. Note the characteristic frequency of the whole model is not zero.
For a single Maxwell element, the phase changes greatly around the characteristic frequency,

while it remains unchanged at other frequencies. Thus, every Maxwell element can be considered
alone. In a certain frequency range, only the element whose retardation mechanism’s
characteristic frequency matches can work while the others have no function. The damp of the
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Fig. 3. General Maxwell model.
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element whose characteristic frequency is in the lower range is very large, and the element can be
considered as a short circuit. That is, the spring is connected with the two ends directly and its
stiffness appears as static stiffness. The damp of the element whose characteristic frequency is in
the higher range is very small, and the element can be considered as an open circuit. That is, the
element contributes nothing to the stiffness. The static stiffness of this frequency range is
the outcome of springs connected in parallel whose characteristic frequencies are lower than the
frequency. The shock stiffness is determined by the spring of the element whose characteristic
frequency matches. The element whose characteristic frequency is higher than the frequency of
this section can be neglected.
The number of elements is determined based on the frequency section interested. It is very easy

to extend such a model to a broader frequency range: connecting the elements whose
characteristic frequencies are higher in parallel will be fit for higher frequency section; for lower
frequency section, it is necessary to divide the 0th element into the element with lower
characteristic frequency and the spring (the new 0th element) connected in parallel. The sum of the
element’s elastic parameter and the spring’s stiffness is supposed to be equal to the stiffness of the
spring of the former 0th element. In other words, the stiffness of the higher frequency section
should remain unchanged.

5. Determination of the parameters

Let the parameters of the ith Maxwell body be ki; ci; (i ¼ 0yn; c0 ¼ N). The stiffness kðoÞ
related to the known frequency can be determined as follows:
(a) Determining the 0th element

k0 ¼ kð0Þ; c0 ¼ 0:

(b) Determining the next element
Assuming kðoÞ changes greatly along with frequency from the very beginning, its characteristic

frequency is oi; the corresponding stiffness of the upper limit of this frequency section is kðo�
i Þ:

Thus

ki ¼ kðon

i Þ � ki�1; ci ¼
ki

oi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þ k1 þ?þ ki�1 þ ki

k0 þ k1 þ?þ ki�1

s
: ð15Þ

(c) Repeating the procedure (b) till kðoÞ hardly changes along with frequency or exceeds the
scope of interest.

6. Examples

Fig. 4 shows the stiffness–frequency characteristics of an elastic body with a broad range of
frequency. A general Maxwell body with three elements is used to represent the elastic body’s
viscoelasticity, i.e., the model of the material is simplified as two retardation mechanisms.
According to the method introduced above, the parameters of each element can be obtained. The
0th element represents the static stiffness, k0 ¼ 11:22� 103 N/m, c0 ¼ 0N s/m; the first element
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represents the retardation mechanism whose working frequency is in the range 10–105Hz,
o1 ¼ 1:99� 103 Hz, k1 ¼ 67:65� 103 N/m, c1 ¼ 0:9011N s/m, the second element, has
working frequency in the range 105–1011Hz, o2 ¼ 2:51� 109 Hz, k2 ¼ 8:834� 106 N/m,
c2 ¼ 0:435� 10�3 N s/m. There are five parameters totally and the fitting results are shown in
Fig. 4.
The elastic body can also be described as a six-element general Maxwell body (five retardation

mechanisms) to represent its viscoelasticity. The parameters of each element are: the 0th element
representing the static stiffness, k0 ¼ 11:22� 103 N/m, c0 ¼ 0N s/m, the first element representing
the retardation mechanism working between 10–103Hz: o1 ¼ 126:9Hz, k1 ¼ 3:92� 103 N/m,
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Fig. 4. Stiffness–frequency characteristic of general Maxwell with three elements.
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Fig. 5. Stiffness–frequency characteristic of general Maxwell with six elements.
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c1 ¼ 35:88N s/m, the second element: 103–105Hz, o1 ¼ 10:1� 103 Hz, k1 ¼ 10:56� 103 N/m,
c1 ¼ 1:376N s/m, the third element: 105–107Hz, o1 ¼ 5:01� 106 Hz, k1 ¼ 53:16� 103 N/m,
c1 ¼ 18:6� 10�3 N s/m, the fourth element: 107 to 109Hz, o1 ¼ 1:01� 108 Hz, k1 ¼
1:871� 106 N/m, c1 ¼ 2:1� 103 N s/m, the fifth element: 109–1011Hz, o1 ¼ 4:98� 109 Hz, k1 ¼
6:963� 109 N/m, c1 ¼ 0:297� 10�3 N s/m. There are totally 11 parameters and the final fitting
results are shown in Fig. 5.
The fitting results suggest that the general Maxwell body reflects the relationship of the stiffness

and the frequency of the viscoelasticity body on the whole. More elements are used for more
accurate fitting, more parameters are needed. In this example, the damping coefficient of each
element is almost the same because the relationships of stiffness and frequency of the viscoelastic
body are linear. There are more retardation mechanisms in six-element model, and the damping
coefficient of each element is smaller accordingly.

7. Conclusion

Maxwell body can be used to describe the relationship between stiffness and frequency of
viscoelastic body similar to rubber, with its static stiffness zero, whose nature is liquid with great
viscosity. For sulfured rubber with some static stiffness, connecting in parallel a spring without
damping to a Maxwell body can make a standard solid model. There is only one retardation
mechanism in the standard solid model, which causes a very limited scope of the frequency related
to the stiffness and is not enough to describe practical materials. If several Maxwell bodies are
connected in parallel to the standard solid body, i.e., if the number of the retardation mechanisms
which work at different frequencies are increasing the stiffness frequency characteristics in a wider
scope of frequencies can be obtained.
The method using several Maxwell bodies connected in parallel to describe the stiffness

frequency characteristics of the viscoelastic body in a broad frequency scope has a clear physical
concepts and so are the fitting parameters. Hence, this method is convenient to use. The deficiency
of this procedure for higher order model is that the parameters needed to be determined are in this
case many, and a lot more data is needed.

Appendix A. Nomenclature

c damping
ci ith element’s damping
F force
k stiffness
kn complex stiffness
ki ith element’s stiffness
kð0Þ static stiffness
kðoÞ dynamic stiffness
kðNÞ shock stiffness
t time
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x displacement
d phase angle
o angular frequency
oi ith element’s characteristic frequency
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